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Abstract Phytoplankton are key components of

ecosystems. Their growth is deeply influenced by

temperature. In a context of global change, it is

important to precisely estimate the impact of tempera-

ture on these organisms at different spatial and temporal

scales. Here, we review the existing deterministic

models used to represent the effect of temperature on

microbial growth that can be applied to phytoplankton.

We first describe and provide a brief mathematical

analysis of the models used in constant conditions to

reproduce the thermal growth curve. We present the

mechanistic assumptions concerning the effect of tem-

perature on the cell growth and mortality, and discuss

their limits. Thecouplingeffect of temperature andother

environmental factors such as light are then shown.

Finally, we introduce themodels taking into account the

acclimation needed to thrive with temperature varia-

tions. The need for new thermal models, coupled with

experimental validation, is argued.

Keywords Temperature growth models � Thermal

growth curve � Protein thermal stability �
Phytoplankton � Microalgae � Cyanobacteria

1 Introduction

Recent estimations predict a global temperature

increase of 1–5 �C by the year 2100 (Rogelj et al.

2012). In this context, the microbial communities,

either terrestrial or aquatic, are expected to be deeply

impacted (Frey et al. 2013; Vezzulli et al. 2012;

Thomas et al. 2012). Unicellular organisms are

ectotherms and cannot regulate their temperature.

They are thus particularly sensitive to temperature,

which controls cellular metabolism by affecting

enzymatic activity (Privalov 1979; Kingsolver 2009)

and stability (Privalov 1979; Danson et al. 1996;

Eijsink et al. 2005). Microorganisms play a key

ecological role since they are involved in most of the

biogeochemical fluxes (Paul 2014; Fuhrman et al.

2015). Especially, the autotrophic unicellular organ-

isms (i.e. phytoplankton) are the basis of trophic

chains in the majority of ecological systems (Field

et al. 1998). Modeling the effect of temperature on

phytoplankton physiology and cellular metabolism is

thus crucial for better predicting ecosystems evolution

in a changing environment.

In balanced growth conditions, the net growth rate

of every microorganism as a function of temperature is
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an asymmetric curve (see Fig. 1) called the thermal

growth curve or the thermal reaction norm (King-

solver 2009). The cardinal temperatures correspond-

ing to the boundaries of thermal tolerance are defined

as the minimal (Tmin) and maximal (Tmax) tempera-

tures for growth. The temperature for which growth is

maximal is called the optimal temperature (Topt). The

growth rate obtained at Topt is the maximal growth rate

lopt, whenever all the other factors affecting growth

are non-limiting. The thermal range on which a given

species can thrive is the thermal niche width (i.e.

Tmax � Tmin). The asymmetry of the growth curve

results from differential effects on physiology at low

(under Topt) and high (above Topt) temperatures. At

low temperatures the rate of every enzymatic bio-

chemical reactions are affected. At high temperatures,

structure and stability of some cellular components,

such as key enzymes or membrane compounds

(mainly lipids or proteins) are denatured. The conse-

quences on cell metabolism and integrity leads to an

increase in mortality (Serra-Maia et al. 2016). These

deleterious effects depend on the time spent at high

temperature, while the ‘thermal dose’ represents the

temperature damages (Holcomb et al. 1999). The

combined effects on metabolism, cell regulation

mechanisms and cell integrity give the thermal growth

curve (Corkrey 2014; Ghosh et al. 2016). While most

of these underlying mechanisms have not been fully

elucidated, several authors have proposed macro-

scopic models to represent this thermal growth curve.

These simple models account for a minimum number

of variables and do not provide a detailed mechanistic

description of the involved biochemical underlying

phenomena.

The aim of this study is to summarize the existing

deterministic temperature growth models that can be

used for phytoplankton, and to clarify the assumptions

on the considered physiological processes. Firstly,

models in non-limited and balanced growth conditions

(i.e.whenall the cell variables growat the sameconstant

rate over time) are described. The key hypotheses are

explored through the reviewof growthmodels aswell as

the representation of the effect of temperature on cell

mortality. Secondly, the coupling effect of temperature

and other environmental factors such as light is

addressed. Thirdly, a guideline is proposed to choose a

model depending on the modelling purposes. Then, we

present models taking into account temperature varia-

tions. The challenges to design a new generation of

thermal models are finally discussed.

2 Modeling the specific growth rate of unicellular

organisms as a function of temperature:

the thermal growth curve

In this section, we detail the existing models dedicated

to the effect of temperature on the specific growth rate

of microorganisms in non-limiting conditions (see

Tables 1, 2 for a summary). As discussed latter on, the

specific growth rate concept (i.e. biomass increase per

unit of time per unit of biomass) is highly dependent

on the biomass descriptor.

Fig. 1 Thermal growth

curve of the microalgae

species Astrionella formosa

[redrawn from Bernard and

Rémond (2012)]
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Table 1 Synthesis of the main models for growth rate as a function of temperature (see also Sect. 3.1)

Model Type #
Parameters

Validation (data sets) Cardinal temperatures Mortality

Empirical models

Square-root E 4 29, Bacteria (Ratkowksy

et al. 1983)

Tmin and Tmax are explicit Topt is found by

numerical optimization

No

CTMI E 4 47, Bacteria and yeast

(Rosso et al. 1993)

Explicit No

Blanchard E 4 2, Benthic phytoplankton

(Blanchard et al. 1996)

Topt and Tmax are explicit Tmin is not defined No

Bernard and

Rémond

E 4 15, Phytoplankton (Bernard

and Rémond 2012)

Explicit No

Eppley–Norberg SE 4 5, Phytoplankton (Norberg

2004) Topt ¼
bz � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðw=2Þ2b2 þ 1

q

b
absðTmax � TminÞ ¼ w

No

Semi-empirical models

Arrhenius

equation

SE 2 – Not defined No

General mechanistic models

Master reaction

(for eq. 19)

M 4 1, Normalized, bacteria

(Johnson and Lewin

1946)

and then yeast (Uden 1985)

Topt ¼
DHz=R

ln
�DHzeDS � DHeDS

DH

� �

Tmin and Tmax are not defined

Yes

(implicit)

Hinshelwood M 4 No
Topt ¼

E1 � E2

Rln
A1E1

A2E2

� �

Tmax ¼
E1 � E2

Rln
A1

A2

� �

Tmin ¼ Topt

�E1=c
Topt � E2=c

� �

with c ¼ RlnðA2=A1�ðE2 � E1Þ=E1Þ

Yes

(explicit)

DEB theory M 6 No Tmin and Tmax are not defined Topt is found

numerically

Yes

(implicit)

Protein-stability based models

Modified Master

reaction

M 4 230, Normalized, all

microorganisms (Corkrey

2014)

Topt ¼
DCpT0 þ DH

DCp þ R
Tmin and Tmax are not

defined

Yes

(implicit)

Proteome based M 2 12, Normalized, bacteria

(Dill 2011)

Tmin and Tmax are not defined Topt is found

numerically

Yes

(implicit)

Heat capacity

based

M 4 12, Soil processes

(Schipper et al. 2014)

Tmin, Topt, Tmax are found numerically No

‘Validation’ corresponds to the original data sets used to develop and validate the models

E empirical models, M mechanistic models, SE semi-empirical models
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2.1 Experimental and methodological

clarifications

The specific growth rate is defined, in batch accli-

mated cultures, as the specific biomass growth rate

during the exponential phase:

lðTÞ ¼ 1

X

dX

dt
¼ lnð2Þ

gðTÞ ð1Þ

where T is a fixed temperature, X is the biomass

concentration and g(T) is the generation time (i.e the

time it takes to double the population size). The

organisms are assumed to be in balanced growth

conditions as defined by Campbell (1957) (i.e. every

extensive property of the growing system increases by

the same factor over a time interval), for a period long

enough so that the acclimation processes have reached

their steady state. lðTÞ is commonly called the thermal

growth curve or the thermal reaction norm (King-

solver 2009).

It is important to note that in practice the thermal

growth curve depends on different factors, especially

the way biomass is measured. Firstly, different

biomass descriptors are commonly used, such as cell

counts, particulate organic carbon concentration

(POC), total cell biovolume or optical density. The

dynamics of some descriptors is likely to be affected

differentially by temperature than, for example, the

dynamics of cell concentration. In phytoplankton, the

chlorophyll content is a function of temperature

(Geider 1987), and thus the evolution of optical

density results both from the growth process and from

the shift in the cellular optical properties. An ideal

biomass estimate should be proportional to the carbon

mass with a temperature-independent constant. The

difficulty to compare observations from different

studies is inherent to heterogeneity in the measured

descriptors.

Secondly, the experimental protocols are most of

the time unclear on the acclimation period preceding

the growth measurement. Acclimation time can vary

from one day to several weeks (Boyd et al. 2013;

Corkrey 2014). In some cases, biomass evolution is

probably affected by acclimation to the new

Table 2 Comparison of the main models for growth rate as a function of temperature (see also Sect. 3.1)

Model Calibration r2 |AIC| |BIC| # Citations

Empirical models

Square-root **** 0.987 50.694 49.906 710

CTMI ***** 0.989 52.541 51.752 267

Blanchard **** 0.988 50.092 49.303 111

Bernard and Rémond ***** 0.989 52.541 51.752 77

Eppley–Norberg **** 0.988 52.064 51.275 146

Semi-empirical models

Arrhenius equation – – – – –

General mechanistic models

Master reaction *** 0.944 33.443 32.457 107

Hinshelwood ** 0.945 37.946 37.157 507

DEB theory * 0.985 33.748 32.368 –

Protein-stability based models

Modified Master reaction *** 0.841 26.403 25.417 20

Proteome based ** 0.839 30.064 29.472 126

Heat capacity based ** 0.841 26.429 25.443 42

r2, |AIC| (Akaike Information Criterion) and |BIC| (Bayesian Information Criterion) are the absolute values calculated for Fig. 2.

‘Calibration’ corresponds to calibration easiness, rated from 1 to 5 stars (the latter being better); calibration easiness is determined

using several criteria: the associated computing time, the existence of a dedicated algorithm, the identifiability of the model, the

biological meanings of the parameters. The number of citations is estimated using Google Scholar citations for the first article

presenting the model
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temperature. For example, some experimental proto-

cols proceed by gradually increasing temperature and

measuring the growth rate. The main advantage is that

they provides a rapid evaluation of the temperature

response, but the recorded response reflects a mix

between a transient acclimation phase and the effect of

temperature on the cell metabolism. The possible bias

is however even stronger when the descriptor used is

related to carbon content with a temperature-depen-

dent constant. For example, a too short period of

acclimation results in a still evolving biomass to

chlorophyll a ratio. Therefore, if the growth rate is

estimated using chlorophyll a concentration (or tur-

bidity) the computed growth rate will be biased.

The growth rate estimated from oxygen production

must also be considered with care. The light phase of

photosynthesis is mainly a photochemical process and

is hardly affected by temperature at temperatures

below Topt. Carbon dioxide fixation in the Calvin cycle

is an enzymatic process which is highly temperature

dependant. Estimating growth rate from oxygen

production will thus mask most of the temperature

impact if an acclimation period has not been consid-

ered. The experimental acclimation period at a given

temperature is of major importance for the consistency

of the thermal growth curve.

For all these reasons, Boyd et al. (2013) have

developed a protocol to construct the thermal growth

curve for phytoplankton and optimize the compara-

bility of different thermal growth curves between

different experiments and different species. This

protocol specifies that:
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Fig. 2 Fit of the 10 described models on the normalized thermal growth curve of Asterionella formosa [extracted from Bernard and

Rémond (2012)]. Models denoted with a * are normalized. MRM master reaction model, MMRM modified master reaction model
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1. the population must be acclimated to the exper-

imental temperature for at least 4 generations (we

recommend even 7 generations),

2. the population must be kept at an exponential

growth phase using semi-continuous cultures,

3. multiple biomass descriptors must be used and

compared to obtain growth rates (cell counts,

chlorophyll a fluorescence, etc.); we recommend

to consider carbon or dry weight for biomass,

4. a minimum of 6 experimental growth rates at 6

different temperatures must be obtained,

5. the cultures must be carried out with three

replicates,

6. all the other parameters must be kept constant, if

possible at optimal levels,

7. the experiments with temperatures at which the

cells do not grow or grow very slowly must be

repeated several times,

8. several strains of the same species should be

compared.

2.2 Empirical approach to model the thermal

growth curve

Various empirical models (i.e. not developed from

biological assumptions) have been proposed since the

1960’s to represent the thermal growth curve, but only

three are still commonly used. Historically, these

models have mostly been developed for food-process-

ing industry and medical applications.

The square-root modelThe Square-Root model was

initially proposed by David Ratkowsky as an alterna-

tive to the Arrhenius model (Ratkowsky et al. 1982)

(see Eq. 9) and then extended to the whole biokinetic

range (Ratkowksy et al. 1983):

lðTÞ ¼ b T � TminÞð1� ecðT�TmaxÞ
� �h i2

ð2Þ

with

Tmin � T � Tmax ð3Þ

where Tmin and Tmax are the minimal and maximal

temperatures for growth, b is the regression coefficient

of the squared root growth rate plotted against

temperatures below the optimal temperature, and c is

an additional parameter to represent growth rate

decrease above the optimal temperature.

The CTMI model The CTMI (Cardinal Temperature

Model with Inflexion) was developed by Lobry et al.

(1991) and later popularized by Rosso et al. (1993):

lðTÞ ¼ 0 if T\Tmin

lðTÞ ¼ lopt/ðTÞ if Tmin � T � Tmax

lðTÞ ¼ 0 if T [ Tmax

8

>

<

>

:

ð4Þ

with

under the condition (Bernard and Rémond 2012):

Topt [
Tmin þ Tmax

2
ð6Þ

Tmin, Topt, Tmax are the minimal, optimal and maximal

temperature for growth and lopt is the growth rate at

Topt. The model parameters have a direct biological

interpretation. The model was built for an easy

calibration on experimental data.

The Blanchard model: The Blanchard model was

developed by Blanchard et al. (1996) to model the

photosynthetic capacity of benthic phytoplankton as a

function of temperature. This model can be used to

represent the thermal growth curve:

lðTÞ ¼ lopt

Tmax � T

Tmax � Topt

� �b

e�bðTopt�TÞ=ðTmax�ToptÞ

ð7Þ

with T � Tmax and Topt\Tmax. Parameters Topt and

Tmax correspond to the cardinal temperatures, lopt is

the growth rate at T ¼ Topt and b is a dimensionless

parameter.

The Eppley–Norberg model Eppley (1972)

reviewed the effect of temperature on phytoplankton

growth in the sea by comparing different thermal

growth curves for a variety of phytoplankton species

/ðTÞ ¼ ðT � TmaxÞðT � TminÞ2

ðTopt � TminÞ
h

ðTopt � TminÞðT � ToptÞ � ðTopt � TmaxÞðTopt þ Tmin � 2TÞ
i ð5Þ
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in non-limiting conditions (nearly 200 data points).

Eppley (1972) determined that the maximal growth

rate lopt for each species is constrained by a virtual

envelope along the optimal temperature trait Topt, the

so-called ‘Eppley curve’ (see Fig. 3). Eppley (1972)

stated that for any phytoplankton species growing

under 40 �C, ‘hotter is faster’.
Using Eppley’s hypothesis, Norberg (2004) devel-

oped a temperature-growth model, the ‘Eppley–Nor-

berg’ model:

lðTÞ ¼ 1� T � z

w

� �2
" #

aebT ð8Þ

where w is the thermal niche width, z is the temper-

ature at which the growth rate is equal to the Eppley

function and is a proxy of Topt, a and b are parameters

of the Eppley function. The Eppley–Norberg model is

widely used by the scientific community working on

phytoplankton [e.g. see the recent paper of Taucher

et al. (2015)].

2.3 Empirical model comparison

A comparison between the Square-Root model and the

CTMI was made by Rosso et al. (1993) and more

recently by Valik et al. (2013). According to these

studies, the two models fit equally well the data. Both

models are validated by Valik et al. (2013) using an

F-test. However, the b and c parameters of the Square-

root model are correlated, whereas the CTMI param-

eters are not, which allows easier parameter

identification.

A more extensive comparison between the set of

empirical models is presented on Fig. reftimbre2 for

Asterionella formosa. It turns out that most of them

can successfully describe this data set, but the fit is

almost perfect for the CTMI and the Square-Root

model. The CTMI proves useful for cardinal temper-

atures identification since all these parameters have a

biological meaning. A guideline for choosing the most

appropriate model is proposed in the discussion

section.

2.4 Semi-empirical approach

Semi-empirical models use a combination of biolog-

ical mechanisms and empirical formulations. The very

first temperature model, the Arrhenius equation, was

developed in this way.

The Arrhenius equation In the beginning of the

twentieth century, the work of Jacobius Van’t-Hoff

and Svante Arrhenius on the effect of temperature on

chemical reactions (Arrhenius 1889) was introduced

in biology by Snyder (1906), setting that temperature

has an exponential influence on biological reactions

and then on cellular growth according to the following

equation called ‘the Arrhenius law’:

Fig. 3 a Eppley envelope function with the original data points. b 5 Data sets for eukaryotic phytoplankton species. c Eppley–Norberg
plot for the 5 species [redrawn from Norberg (2004)]
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kðTÞ ¼ Ae�E=ðRTÞ ð9Þ

where k(T) is the rate of reaction, R is the gas constant,

A is called the ‘collision factor’ or the pre-exponential

part and E is the activation energy, determined

empirically. The Arrhenius equation is semi-empiri-

cal, partially based on thermodynamical considera-

tions; it can be interpreted as the number of collisions

per unit of time multiplied by the probability that a

collision results in a reaction. The Arrhenius equation

is widely used to describe the temperature effect on

different biological processes, from enzyme catalysis

to community activity (e.g. see Frauenfelder et al.

1991; Lloyd and Taylor 1994; Gillooly et al. 2001).

However, it is only valid on a small range of

temperature, excluding high temperatures inhibiting

growth (Slator 1916). Arrhenius model parameters are

easy to estimate using an Arrhenius plot, by expressing

lnðlðTÞÞ as a function of 1 / T, which gives a linear

relationship; parameters can thus be obtained with a

linear regression. The Arrhenius model allows good

representations of growth rates at low temperatures,

but some Arrhenius plot does not give straight lines,

indicating for example that E can vary with T.

Moreover, the Arrhenius model cannot represent the

decreasing part of the thermal growth curve, e.g. when

temperature causes cell death. Arrhenius equation can

be conveniently reformulated as:

kðTÞ ¼ kre
TA=Tr�TA=T ð10Þ

where Tr is a reference temperature, TA is the

Arrhenius temperature (i.e. slope of the straight line

of the Arrhenius plot) and kr is the reaction rate at Tr.

2.5 Mechanistic approach

The empirical models are convenient to identify the

main characteristics of the thermal growth curve.

However, the mechanistic approach aims to represent

the thermal growth curve as a result of the inherent

physiological processes. These models are mostly

based on the Arrhenius formulation, but also on the

Eyring equation. In addition to their explanatory role,

because their parameters have thermodynamical

meanings, it is possible to extract thermodynamical

informations from the thermal growth curve only.

2.5.1 General models based on the Arrhenius

and Eyring formulations

The Eyring equation and the Transition-State theory

this theory stipulates that, during a chemical reaction,

there exists an intermediate form between the reac-

tants and the products (e.g. the native and denatured

protein and enzyme) which is in rapid equilibrium

with the reactants (Eyring 1935):

Pf �
k1

k2
TS!kd

Pu ð11Þ

where, in this example, Pf and Pu are the fraction of

native and denatured proteins, respectively, and TS is

the transition state. The Eyring equation, roughly

similar to the Arrhenius law, was nonetheless based on

these pure mechanistic considerations and reads

(Eyring 1935):

kðTÞ ¼ KBT

h
eDSz=Re�DHz=ðRTÞ ð12Þ

where KB is the Boltzmann constant, h is the Planck’s

constant. The parameters DSz and DHz correspond to

the entropy and enthalpy of activation for the transi-

tion state.

The master reaction model Johnson and Lewin

(1946) noticed that cultures of Escherichia coli

exposed to 45 �C during a long time ceased to grow,

but grew exponentially again when replaced at 37 �C.
The longer the cultures were exposed to the high

temperature, the lower was the growth rate at 37 �C.
However, there was no sign of viability loss. They

concluded that cells endured reversible damage,

particularly protein denaturation. They considered a

simple case where a single reaction controlled by one

master enzyme En limits growth (with no substrate

limitation):

lðTÞ ¼ cTEne�DH
z
A
=ðRTÞeDS

z
A
=R ð13Þ

where c is a constant given by the Eyring formulation

(Eyring 1935), DH
z
A is the enthalpy of activation

(enthalpy difference between the transition complex

and the active form) and DS
z
A is the entropy of

activation.

The enzyme goes from a native, active form En to a

reversibly denatured, inactive form Ed:

632 Rev Environ Sci Biotechnol (2017) 16:625–645
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En �
k1

k2
Ed ð14Þ

The chemical equilibrium is defined as:

K ¼ k1=k2 ¼ Ed=En ¼ e�DH=ðRTÞþDS=R ð15Þ

where DH is the enthalpy difference between the

active form and the inactive form, DS is the entropy

difference. If E0 is the total amount of enzyme,

E0 ¼ En þ Ed. It follows that:

En ¼ E0

1þ K
¼ E0

1þ e�DH=ðRTÞþDS=R
ð16Þ

Then, by posing C ¼ ceDS
z
A
=RE0 and replacing En by

Eq. 16 in 13, Johnson and Lewin obtained the master

reaction model (see Fig. 4a):

lðTÞ ¼ CTe�DH
z
A
=ðRTÞ � 1

1þ e�DGðTÞ=ðRTÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

PðTÞ

ð17Þ

where P(T) is the probability that the enzyme is in its

native state and DGðTÞ is the Gibbs free energy

change:

DGðTÞ ¼ DH � TDS ð18Þ

However, the master reaction model assumes that DG

is temperature independent. An other version of Eq. 17

exists, where the exponential part does not follow an

Eyring formulation but rather an Arrhenius one, which

is relevant in the case of reactions with high activation

energy like protein denaturation (Bischof and He

2005):

lðTÞ ¼ Ce�DH
z
A
=ðRTÞ � 1

1þ e�DGðTÞ=ðRTÞ ð19Þ

It is worth noting that this equation here simplifies the

calculation of the cardinal temperature Topt and is

supposed to have little influence on the model fit and

behavior (see Tables 1, 2).

The Hinshelwood model Hinshelwood (1945) pro-

posed a rather simple model in which the temperature-

dependent growth rate is just the difference between a

synthesis rate f1ðTÞ and a degenerative rate f2ðTÞ (see
Fig. 4b):

lðTÞ ¼ A1e�E1=ðRTÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

f1ðTÞ

�A2e�E2=ðRTÞ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

f2ðTÞ

ð20Þ

where A1 and A2 are related to entropy and E1 and E2

are related to enthalpy. Hinshelwood believed that the

function f2ðTÞ, which causes the ‘catastrophic decline

to zero’ (Hinshelwood 1945), represents protein

denaturation. He argued that the model only works if

E2 is higher than E1, because the degenerative process

represented by f2ðTÞ must be sudden. Since protein

denaturation possesses a high activation energy, it is a

good candidate for driving the process. Moreover, A2

(corresponding to entropy) also has to be quite high.

Thus, the ‘activated state must be highly disordered

compared with the initial state’ which ‘results in an

easy transition to the activated state in spite of the

Fig. 4 Illustration of the master reaction model (a) and of the

Hinshelwood model (b). The black lines correspond to lðTÞ, the
blue dashed lines corresponds to CTe�DHz=ðRTÞ (a) and to f1ðTÞ
(b), the red dashed line corresponds to P(T) (a) and to f2ðTÞ (b).
(Color figure online)
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large amount of energy which has to be taken up to

reach it’ (Hinshelwood 1945). Precisely, protein

denaturation leads from a highly ordered state to an

higly disordered state and is therefore associated with

a large entropy increase. From the Hinshelwood

model, after some mathematical manipulations, it is

possible to express Tmin, Topt, Tmax (see Table 1).

The DEB theory approach In the Dynamics Budget

Theory, the effect of temperature on population

growth is taken into account using a modified Master

Reaction model (Kooijman 2010), where all the

temperature-dependent functions are Arrhenius mod-

ified equations:

lðTÞ ¼ k1e
TA=T1�TA=T

1þ eTAL=T�TAL=TL þ eTAH=TH�TAH=T

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fD

ð21Þ

where TL and TH are related to cold and hot

denaturation (lower and upper boundaries), TAL and

TAH are the Arrhenius temperatures (i.e. the slope of

the straight line of the Arrhenius plot at low and high

temperatures respectively, see eq. 10). The ratio f�1
D

corresponds to the fraction of enzyme in its native

state. This model therefore also accounts for cold

denaturation, contrary to the Master Reaction model.

2.5.2 The protein thermal stability hypothesis

In addition to the temperature-dependent enzyme

activity, protein thermal stability plays a key role in

the microbial thermal growth curve (Johnson and

Lewin 1946; Rosenberg et al. 1971; Zeldovich et al.

2007; Pena et al. 2010). If temperature increases,

certain proteins become first inactive and then dena-

tured. Especially, at high temperatures (T [ Topt), this

phenomenon occurs for many proteins and causes a

growth rate decrease. In line with the master reaction

model, some models include additional assumptions

about protein thermal stability and its consequences on

growth, assuming that proteins are the key factors

controlling thermal growth curves.

The modified master reaction model The master

reaction model assumes thatDG, the Gibbs free energy

difference between the native and denatured protein, is

temperature independent. Based on Murphy et al.

(1990) work, Ross (1993) and then Ratkowsky et al.

(2005) remarked that DG should vary with T in Eq. 17

following 18. Moreover, Murphy et al. (1990) showed

that globular proteins (including enzymes) share

common thermodynamic properties. For any protein,

the denaturation enthalpy change (DH) and the

denaturation entropy change (DS), normalized to the

number of amino-acids residues of this protein, both

converge to a fixed value DH� and DS� at T�
H and T�

S

respectively (Privalov 1979). The reason for such a

temperature convergence is still unclear. Nonetheless,

it has been shown that, at T�
H and T�

S , the hydrophobic

contribution to DH and ıS approaches zero (Robertson

and Murphy 1997). Using the heat capacity thermo-

dynamic parameter Cp, Murphy et al. (1990) stated

that DH and DS can be expressed as a function of the

heat capacity change DCp:

DH ¼ DH� þ DCpðT � T�
HÞ ð22Þ

DS ¼ DS� þ DCplnðT=T�
S Þ ð23Þ

where DH� is the enthalpy change per mol of amino-

acid residue of the enzyme at T�
H , DS� is the entropy

change per mol of amino-acid residue of the enzyme at

T�
S , DCp is the heat capacity difference between the

native and denatured protein, T�
H is the temperature at

which the contribution of DCp to enthalpy is zero and

T�
S is the temperature at which the contribution of DCp

to entropy is zero. The heat capacity change DCp is

constant for a given protein (Privalov and Khechi-

nashvili 1974). Using Eqs. 22 and 23, the Gibbs free

energy of protein denaturation (i.e. the protein thermal

stability) is (Fig. 5):

DGðTÞ ¼ n DH� � TDS� þ DCp½ðT � T�
HÞ � TlnðT=T�

S Þ�
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

DGhydro

2

6

4

3

7

5

ð24Þ

where n is the number of amino-acid residues in the

master enzyme and DGhydro is the hydrophobic

contribution to the free energy change. Equation 24

describes protein thermal stability in terms of

hydrophobic contribution of apolar compounds.

Ross (1993) and Ratkowsky et al. (2005) proposed

to replace DG by Eq. 24 in 17 (forming the modified

master reaction model). Because T�
H , T�

S and DS� are

considered as universal constant for globular proteins

(Murphy and Gill 1991), the modified master reaction

model has 5 tunable parameters (Fig. 5). As a

validation, Ratkowsky et al. (2005) fitted the model

on 35 bacterial strains normalized data sets obtained in
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non-limiting conditions. Their main conclusion points

towards the crucial role played by a single master

enzyme whose thermal sensitivity is driven by

hydrophobic interactions.

Corkrey (2014) extended the modified master

reaction model to unicellular andmulticellular eukary-

otes. They considered DH� as a universal constant as
well, reducing the model parameters to 4. They fitted

the model on 230 strains normalized data sets covering

a range of 124 �C. Their principal conclusion states

that the model is able to find coherent protein

thermodynamics parameters with only net growth

rates data (i.e. growth rate versus temperature).

Hyperthermophiles proteins seem to be more widely

robust. Moreover, they found several links between

thermodynamic parameters, for example between Topt

and DCp (enzyme stability), and between Topt andDHz

(enzyme activity). However, they did not provide

further explanations. They finally speculate on the

nature of the single limiting reaction. They assume

that if a single reaction (and not several) is rate

limiting, then it should be linked to the protein

unfolding and re-folding process. They particularly

focus on the role of chaperones proteins responsible

for de novo folding.

The proteome-scale approach Zeldovich et al.

(2007) proposed that the whole proteome plays a role

in microbial thermal sensitivity. Resuming this idea,

Chen and Shakhnovich (2010) considered that each

important protein i has its own Gibbs free energy of

denaturation DGi. The growth rate of a microbe

becomes dependent of the stability of each protein,

and the thermal denaturation of several proteins causes

a bottleneck effect on growth:

lðTÞ ¼ CTe�DHz=ðRTÞ � 1
QNp

i 1þ e�DGiðTÞ=ðRTÞ ð25Þ

where Np is the number of proteins. According to

Zeldovich et al. (2007), the proteome can be described

in protein stability distribution thanks to a dedicated

probability function of the Gibbs free energy, PðDGÞ
(see Fig. refprotherm). By taking the natural logarithm

of Eq. 25, Chen and Shakhnovich (2010) expressed the

growth rate as:

lnðlðTÞÞ ¼ lnðCTÞ � DHz=ðRTÞ

�
X

Np

i¼1

ln 1þ e�DGi=ðRTÞ
� � ð26Þ

that is, by integrating the resulting equation over the

whole PðDGÞ distribution range and by averaging over
the proteome:

lnðlðTÞÞ ’ lnðCTÞ � DHz=ðRTÞ

� Np

Z L

0

ln 1þ e�DG=ðRTÞ
� �

PðDGÞ dDG

ð27Þ

where L is the maximum value of DG (for example

L ¼ 40 in Fig. 6). Np can be reduced to the number of

the only important proteins. According to Sawle and

Ghosh (2011) and Ghosh and Dill (2010), DG can be

expressed as a function of DH, DS and DCp (using

Eqs. 22, 23), itself depending on the protein chain

length denoted N:

DG ¼ DHðNÞ þ DCpðNÞðT � ThÞ � TDSðNÞ
� TDCpðNÞln T=Tsð Þ

ð28Þ

with

DHðNÞ ¼ aN þ b

DSðNÞ ¼ cN þ d

DCpðNÞ ¼ lN þ m

ð29Þ

where a, b, c, d, l, m are empirical parameters

defined for mesophilic and for thermophilic organ-

isms. The distribution of chain length over the

Fig. 5 The modified master reaction model plot for a microbial

species (black line) with activation function (blue dashed line)

and protein denaturation probability P(T) (red dashed line).

(Color figure online)
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proteome P(N) can be known (Zhang 2000) and is

used to estimate PðDGÞ. It can be modelled by a

gamma distribution:

PðNÞ ¼ Na�1e�N=h

CðaÞha
ð30Þ

where h and a are the parameters of the gamma

distribution corresponding to:

hNi ¼ ah

hðDNÞ2i ¼ ah2
ð31Þ

The brackets represent the mean over all the proteins.

CðaÞ is the gamma function evaluated at a. The model

(Eq. 27), presented as universal, has thus only two

parameters, Np and DHz. It has been validated on 12

normalized data sets of prokaryotes.

The heat capacity hypothesis Hobbs et al. (2013)

and Schipper et al. (2014) proposed a model called the

Macromolecular Rate Theory (MMRT) in which the

thermal growth curve is driven by the heat capacity

change of activation DCz
p (i.e. the heat capacity

difference between the ground state and the transition

state). More precisely, the growth rate is expressed as:

lðTÞ ¼ kB

h
TeDGzðTÞ=ðRTÞ ð32Þ

where kB and h are the Boltzmann and Planck’s

constants, DGz is the Gibbs free energy difference

between the ground state and the transition state of a

possible rate-limiting enzyme. Contrary to the master

reaction model, the MMRT considers that enzymes do

not denature easily and are in rapid equilibrium with a

folded, inactive intermediate (i.e. the transition state).

The Gibbs free energy difference can be here written

as:

DGzðTÞ ¼ DH
z
T0
þ DCz

pðT � T0Þ þ TðDS
z
T0
þ DCz

plnðT=T0ÞÞ

ð33Þ

If DCz
p [ 0, then the heat capacity difference between

the ground state and the transition state (i.e. the

inactive folded enzyme) itself is sufficient to explain

the decrease of growth rate above Topt. Schipper et al.

(2014) validated the MMRT model on microbial soil

processes data sets.

2.6 Mortality induced by temperature

Warm temperatures increase cell mortality because of

protein denaturation and membranes injuries. For

phytoplankton, photosystems and electron chain

transport are denaturated (Song et al. 2014), and a

transient imbalance between the energy needed and

produced must be managed by the cell (Ras et al.

2013; Smelt and Brul 2014; Serra-Maia et al. 2016).

So far, models explicitly presenting the mortality

rate as a function of temperature are rare. The

Hinshelwood model explicitly integrates a mortality

rate with an Arrhenius law (see Fig. 7b). This model

turned out to efficiently represent mortality together

with growth for the chlorophyta Chlorella vulgaris

(Serra-Maia et al. 2016). Another example is Uden

(1985) who combined a master reaction growth model

and an exponential death model for yeast:

lðTÞ ¼ Ce�DHz=ðRTÞ

1þ e�DG=ðRTÞ �
kBT

h
eDS

z
den

=R�DH
z
den

=ðRTÞ

ð34Þ

where DS
z
den andDH

z
den are the entropy and enthalpy of

activation of cells mortality.

Outside of the thermal niche width, for tempera-

tures above the species Tmax, the kinetics of cell

inactivation is called the survival curve (Moats 1971)

(Fig. 7a); from each survival curve, it is possible to

infer the mortality rate at a given temperature.

Different empirical models have been developed,

especially in food science, to represent these survival

curves (Mafart et al. 2002; Smelt et al. 2002; Smelt

and Brul 2014).
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Fig. 6 Gibbs free energy distribution of Escherichia coli

proteome at 37 �C [adapted from Ghosh and Dill (2010)]
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3 Choosing the most appropriate model

In this section, we propose a guideline for choosing the

most appropriate model depending on the study

objectives. We summarize and compare the models

performance and their applicability to phytoplankton

under different modeling scenarios, and highlight the

most appropriate models.

The model comparison is based on the analysis of

193 thermal curve responses associated to 193 differ-

ent strains, resulting from 130 species (Thomas et al.

2012). This data set includes the main phyla of

unicellular photosynthetic organisms.

An illustration of the model performance for 5

strains of the cyanobacterium genus Synechococcus

sp. is plotted on fig. S1 (Pittera et al. 2014).

3.1 Synthesis of model performance

Three criteria have been considered to assess a model

efficiency. The absolute model performance is esti-

mated using r2. To account both for the fit quality and

the number of parameters, we considered the Akaike

Information Criterion (AIC) (Akaike 1992) and the

Bayesian Information Criterion (BIC) (Schwarz 1978)

(see Table 3; table S1-S3). The best models are,
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G
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w
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(T
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Fig. 7 a Survival curves at

different temperatures for

Listeria innocus (redrawn

from Corradini and Peleg

(2006)). b Hinshelwood

model (black curve) with

mortality (red curve) as in

Serra-Maia et al. (2016).

(Color figure online)
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globally, the empirical models, and the Eppley–

Norberg and the CTMI turn out to obtain the best

score (see table S2, fig. S2). The Hinshelwood model,

in the other way, has the best score among the

mechanistic models. It is worth noting here that the

CTMI assumes that Tmax � Topt � Topt � Tmin, which

is not the case for the Eppley–Norberg. Thus, for small

data sets with few points near Topt, the Eppley–

Norberg model has a better fit score (see fig. S3).

To highlight the combination of fit quality and other

important characteristics, we defined several criteria in

Tables 1 and 2: number of parameters, validation on

experimental data, mathematical expression of the

cardinal temperatures, assumption regarding mortal-

ity, calibration easiness, fit quality using r2, AIC, BIC,

and number of citations. From these criterions, we

could derive advantages, limitations and rating for

each model (Table 3). The CTMI, Bernard&Rémond

and the Hinshelwood model obtain the highest score,

with the best trade-off between complexity (e.g. few

parameters), fit quality, calibration easiness and

parameters interpretation.

3.2 Macroscopic modeling without including

mortality

A common scenario when modeling the effect of

temperature on phytoplankton is the need of repre-

senting the net thermal response, without explicitly

representing mortality. The response is generally

focusing on growth rate, but it can also represent a

detailed physiological processes. Below the optimal

temperature, the Arrhenius equation has been widely

used, has a good fit, is easy to calibrate and its

parameters can be interpreted. However, to represent

the whole thermal growth curve, the CTMI is the best

choice because its parameters are directly the cardinal

temperatures and its calibration is easily possible

thanks to a dedicated algorithm. The Eppley–Norberg

model is also a relevant choice with very similar

goodness of fit, especially to describe growth in

optimal light conditions. However, the calibration of

this model is less straightforward than the CTMI.

When light is not photoinhibiting, these models can be

easily combined with the light effect on growth. In

particular, the Bernard and Rémond model is a good

trade-off. This latter model has been originally

validated on 15 phytoplankton species and here on

193 phytoplankton species (table S1-S3) from the

main phytoplankton phyla. The CTMI is thus expected

Table 3 Advantages, limitations and rating of the main models for growth rate as a function of temperature

Model Advantages Limitations Rating

Square-root Fit quality No mortality, Topt is not easily defined ***

CTMI Fit quality, parameters interpretation No mortality ****

Blanchard Calibration easiness, fit quality, application to phytoplankton No mortality Tmin is not defined ***

Bernard and

Rémond

Calibration easiness, fit quality, parameters interpretation,

application to phytoplankton

No mortality *****

Eppley–Norberg Fit quality, application to phytoplankton No mortality, implicit link between

Topt and lopt

Arrhenius

equation

Fit quality below Topt No representation of the decreasing

phase above Topt

**

Master reaction Parameters interpretation Tmin and Tmax are undefined **

Hinshelwood Fit quality, parameters interpretation, explicit mortality Tmin is not defined ****

DEB theory Fit quality High number of parameters *

Modified Master

reaction

Parameters intepretation Poorness of fit **

Proteome based Parameters intepretation, only 2 parameters Poorness of fit ***

Heat capacity

based

– Poorness of fit, parameters

interpretation not clear

*

Rating is based on criteria from Tables 1 and 2 (fit quality and calibration easiness), from 1 to 5 stars (the latter being better)
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to be the ideal candidate to represent the effect of

temperature on phytoplankton communities. The

Eppley–Norberg model is also interesting for model-

ing communities as two of its four parameters are

considered universal and only two are strain-specific.

3.3 Macroscopic modeling with explicit mortality

rate

As we pointed out, few studies exist to represent the

effect of temperature on phytoplankton mortality. The

only model that explicitly represents mortality is the

Hinshelwood model. Adapted for phytoplankton

(Serra-Maia et al. 2016), this model is thus recom-

mended because its parameters can be interpreted, and

the fit quality is acceptable; however, its parameters

calibration are not easy on experimental data with few

data points. We thus recommend to use the CTMI to

generate a patron for the net growth rate. The patron,

made of the data points simulated by the CTMI model

can then be advantageously used to calibrate the

Hinshelwood model.

3.4 Physiological or metabolic modeling

The proteome model is certainly the best candidate to

explain the thermal growth curve, as it includes the

effect of temperature on the whole proteome and has

only two parameters. However, it does not fit very well

the experimental data for phytoplankton growth rates

compared to the empirical models. As for the Hinsh-

welwood model, a patron can be used to artificially

increase the number of data points. This model could

also be adapted to phytoplankton when light is

photoinhibiting.

4 Coupling temperature and other environmental

factors

4.1 Factors influencing the thermal growth curve

The thermal growth curve is assumed to be obtained in

non-limited conditions (Kingsolver 2009). However,

some limitations and perturbations usually occur in the

environment that may simultaneously involve changes

in metabolism. The simplest representation of some

multi-factors impact on the growth rate is to assume

that all the factors are uncoupled. A classical

formalism to represent the effect of n uncoupled

factors is given by the gamma concept (Zwietering

et al. 1993; Augustin and Carlier 2000):

l ¼ lopt:
Y

n

k¼1

ck ð35Þ

where lopt is the maximal growth rate when all the n

environmental factors are optimal, ck is a normalized

function of the environmental factor k. One of the ck

represents the impact of temperature.

In a more accurate approach, the impact of a factor

on the cardinal temperatures can be represented (or

more generally the parameters of the thermal model

can be a function of another factor). In this case, these

environmental factors are coupled to temperature. For

example, temperature plays a role on oxygen dissolu-

tion in water, and the two factors have then a coupled

effect on microbial growth rates; this coupling is

enhanced for unicellular diazotrophic cyanobacteria

which are particularly sensitive to the oxygen con-

centration, because oxygen inhibits their diazotrophic

activity (Brauer et al. 2013).

For the majority of phytoplankton species, the most

important physico-chemicals factors are light and

nutrients (mainly N and P) (Falkowski and Raven

2013).

4.2 The interplay between light and temperature

in phytoplankton

Phytoplankton perform oxygenic photosynthesis to

harvest light. Photosynthesis metabolism is composed

of a dark phase and a light phase, with different

thermal sensitivities. The dark phase involves the

Rubisco enzyme responsible for CO2 fixation in the

Calvin cycle. In the light phase, at low temperatures,

the reactions are mainly photochemical and not

enzymatic and thus less sensitive to temperature. As

a consequence, the cell has to balance the energy and

electrons transferred from photons harvesting and

their conversion into chemical energy in the dark

phase, depending on the temperature [see for example

the review by Ras et al. (2013)]. A shift down to low

temperatures induces a strong imbalance and thus

generates light saturating conditions (see Young et al.

2015). However, at high temperatures, the light phase

is strongly affected by temperatures as electron

transport chains and photosystems structural stability
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is affected (Song et al. 2014) and can induce cell

mortality.

4.2.1 Models assuming an uncoupling between light

and temperature effects

These models assume that temperature and light are

independent factors. For example, the model devel-

oped by Bernard and Rémond (2012) supposes that the

growth rate is expressed as:

lðT ; IÞ ¼ f ðIÞ:/ðTÞ ð36Þ

where /ðTÞ corresponds to the CTMI (Eq. 5) and:

f ðIÞ ¼ lmax

I

I þ lmax

a
I

Iopt

� 1

� �2 ð37Þ

lmax is the maximum growth rate at optimal light

intensity Iopt and optimal temperature Topt, a is the

initial slope of the light response curve. f(I) was built

in line with the Peeters and Eilers (1978) model with

photoinhibition, but reparametrized for a better

parameter identification. Bernard and Rémond

(2012) developed an algorithm to identify the cardinal

temperature from data sets with different light condi-

tions. This model was validated on 15 phytoplankton

species. The hypothesis of uncoupling is, however, no

longer available at high light intensities (i.e. when

photoinhibition occurs) as temperature is known to

play a role in photoinhibition (Jensen and Knutsen

1993; Edwards 2016).

Themodel of Eppley–Norbergmodified by Follows

et al. (2007), uses another formalism to represent both

temperature and light effect:

lðT ; IÞ ¼ lmax:
1

s1
AT e�BðT�T0Þc

� s2
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cT

:
1

cI
max

1� e�kpI
� 	

e�kiI

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cI

ð38Þ

where lmax is the species maximum growth rate, cT

and cI are respectively the normalized temperature

function and the normalized photosynthesis function.

The parameters s1 and s2 ensure the normalization of

cT , while parameters A, B, T0 and cmodify its shape by

taking into account the Eppley hypothesis (see Fig. 8).

Similarly, cI
max ensures the normalization of cI , 1�

e�kpI represents the increase of growth with light at

low irradiance and ki is a constant associated to photo-

inhibition.

4.2.2 Models considering a coupling between light

and temperature

Themodel developed by Dermoun et al. (1992) for the

unicellular Rhodophyta Porphyridium cruentum

accounts for a complex coupling between light and

temperature:

lðT; IÞ ¼ 2lmðTÞð1þ b1Þ
I=IoptðTÞ

1þ 2b1I=IoptðTÞ þ I=IoptðTÞ
� 	2

ð39Þ

where lmðTÞ is the maximum specific growth rate at a

given temperature T, Iopt is the optimal irradiance at a

given temperature T and b1 is the shape factor for

limiting irradiance. lmðTÞ and IoptðTÞ are rational

functions (see Dermoun et al. 1992). It is worth noting

that the tight coupling between light and temperature

in this model leads to identifiability problems partially

due to large number of parameters (9 parameters in the

model). Furthermore, when light is limiting, the

coupling between light and temperature becomes

loose.

4.3 The interplay between nutrients

and temperature

Phytoplankton growth in the oceans is often limited by

nitrogen (N) or phosphorus (P). When limiting, these

nutrients strongly impact the thermal growth curve

(Pomeroy and Wiebe 2001; Thomas 2013; Thomas

and Litchman 2016). Trace nutrients such as trace
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Fig. 8 a Eppley curve normalized at 30 �C. b Photosynthesis as

represented in Eq. 38. The figure is redrawn after Follows et al.

(2007)
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metals or essential vitamins can also play an important

role on growth but their interplay with temperature is

largely unknown.

Thomas (2013) has developed a model taking into

account the nutrient effect (N), assuming that

anabolism is temperature-dependent and nutrient-

dependent, whereas catabolism or mortality only

depend on temperature:

lðT ;NÞ ¼ b1eb2T N

N þ K
� ðd1e

d2T þ d0Þ ð40Þ

where b1, b2, d1, d2 are Arrhenius parameters for

anabolism and catabolism, respectively, and K is the

half-saturation constant of a Michaelis–Menten kinet-

ics of nutrient uptake. d0 is a constant catabolism rate

independent of temperature. Nutrient limitation leads

to a decrease of the thermal niche width, Topt and lopt

(see Fig. 9a). The model has been validated on

temperature and nutrient experiments conducted with

the phytoplankton diatom species Thalassiosira

pseudonana (Thomas et al. 2017).

Grimaud (2016) has developed a dynamical model

taking into account temperature and nutrient for

eukaryotes phytoplankton species, based on the Droop

model (1968). In balanced-growth conditions, the

model gives the following thermal growth curve:

lðT ;NÞ ¼ /2ðTÞ/1ðTÞqðNÞ
/1ðTÞqðNÞ þ /2ðTÞQ0

� m ð41Þ

where /1ðTÞ and /2ðTÞ are CTMI equations for

nutrients and carbon uptake, qðNÞ is a normalized

Michaelis–Menten equation, Q0 corresponds to the

minimal internal nutrient quota needed to grow, m is

the constant mortality/catabolism rate. Figure 9b

shows that a nutrient limitation leads to a decrease

of Topt and lopt, in line with Thomas (2013). However,

the amplitude of the thermal niche width is less

marked, and is only reduced for strong nutrient

limitation (see Fig. 9b). Also, these results depend

on the difference between /1ðTÞ and /2ðTÞ.

5 Accounting for temperature variations

In the natural environment, cells experience temper-

ature fluctuations at different time-scales, ranging

from days to seasons, influencing their physiology and

forcing them to acclimate (Ras et al. 2013; Gestel

et al. 2013). The question is then how to deal with

these variations, while thermal growth curves are

obtained in balanced conditions.

5.1 Assuming instantaneous acclimation at large

time scale

The specific growth rate lðTÞ described in Sect. 2.1 for
balanced growth has been used as such when temper-

ature is time-varying, assuming that the effect of

temperature is instantaneous [see for example Baranyi

and Roberts (1995); Baranyi et al. (1995)]. This

approximation is valid in particular for slow variations
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Fig. 9 Growth rate as a function of nutrient and temperature

lðT ;NÞ. The black lines correspond to different nutrient values,
increasing with the arrow. aModel of Thomas (2013). The blue

and red dashed lines correspond to the positive and negative

terms of Eq. 40, respectively. bModel of Grimaud (2016). Blue

and red dashed lines correspond to /1ðTÞ and /2ðTÞ of Eq. 41,
respectively
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of temperature, such as annual fluctuation of sea

temperature.

5.2 Acclimation to temperature variations

Cell acclimate to temperature by adjusting the biosyn-

thesis of key components (Hall et al. 2010; Ras et al.

2013). For example, Geider (1987) showed that

phytoplankton cells are able to adapt their pigment

content when temperature changes. The chlorophyll

concentration is adjusted to the photon flux and to the

cells capacity of converting it into chemical energy.

The carbon to chlorophyll ratio (h ¼ Chla : C)

increases with temperature, and, following Geider

(1987), this ratio converges after an acclimation phase

to h�ðTÞ:

h�ðTÞ ¼ ekT

ða � bTÞekT þ cI
ð42Þ

where a, b, c, k are constants and I is the light intensity.

However, Eq. 42 is valid for balanced growth.

Dynamical models accounting for acclimation

should therefore consider the different cellular com-

ponents, and include the temperature effect on each

reaction kinetic. Models for phytoplankton including

chlorophyll have been proposed for example by

Geider et al. (1998), but the temperature effect has

been overlooked (assuming that all the kinetics have

the same temperature dependence).

In Bernard et al. (2015), an equation for cell

acclimation is proposed, which can be straightfor-

wardly extended to acclimation to temperature:

_h ¼ d lðTÞ ½h�ðTÞ � h� ð43Þ

where d is a parameter modulating the acclimation

rate, which is assumed proportional to the growth rate

l. This kind of models is of particular interest given

that it can deal with both temperature fluctuations and

the interplay with other factors such as light, but more

experimental data are required for calibration and

validation.

6 Conclusion and future developments

To better picture the temperature effect, there is an

urgent need for standard protocols, as proposed by

Boyd et al. (2013), fulfilling two crucial points: (1)

assess the growth rate with biomass proxies which are

not influenced by temperature; (2) consider acclima-

tion periods of at least one week for each temperature.

Such a protocol is required to isolate the impact of

temperature on growth and to compare different

experimental results.

Despite their simplicity, empirical models turn out

to be very acute for representing the experimental data

sets for phytoplankton (see Fig. 2). Nonetheless, to be

efficient, these models must be associated to tailored

calibration algorithms in line with Bernard and

Rémond (2012) to rapidly fit a data set and quantify

the uncertainty.

The mechanistic approach brings a complementary

viewpoint in the modeling of the thermal growth curve

but also in representing the temperature response for

non-balanced growth conditions. Temperature plays a

concurrent role on enzyme activity and therefore on

reactions kinetics, and on cell structural stability. Most

of the mechanistic models consider that a single

enzyme controls growth at low temperatures (e.g.

MMRM and proteome-scale approach) whereas tem-

perature affects enzyme and protein conformational

stability and leads to a decrease of growth at high

temperatures (Ghosh et al. 2016). Despite the recent

development of a promising unicellular growth model

(Corkrey 2014), this ‘proteome paradigm’ should be

further investigated for several reasons. First, the

effect of temperature on protein stability is still

relatively unclear given that we do not know, for

example, in which extent proteins denaturation pro-

ceeds the same way in vivo as in vitro (Leuenberger

et al. 2017). Second, other structural components play

an important role in the cell thermal stability, and

especially on membrane fluidity (Caspeta et al. 2014).

Third, cells have the capacity to repair their damages

and regrow after a heat shock (Li and Srivastava 2004)

which is not clearly understood, as well as the

molecular mechanisms protecting against mortality

(Ghosh et al. 2016). Finally, the link between the

mortality rate and protein denaturation still remains

unclear; it is for example not known how mortality

increases between Topt and Tmax. Mortality models in

line with Serra-Maia et al. (2016) are needed. In

addition to the ‘proteome paradigm’ limits, the effect

of temperature on cells kinetics is not limited to one

enzyme controlling growth, but apply for all reactions.

Some authors, for example, claim that the thermal

642 Rev Environ Sci Biotechnol (2017) 16:625–645
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growth curve is the result of an imbalance of cellular

energy allocation (called the metabolic hypothesis;

Ruoff et al. 2007; Poertner 2012; Zakhartsev et al.

2015). The use of metabolic models under non-

balanced growth should be used to challenge this

problematic (Baroukh 2014). Additionally, models

describing the dynamics of acclimation should be used

to tackle the cellular response to temperature varia-

tions at different time-scales (Ras et al. 2013).

This work is a step towards the comprehension of

the effect of global warming on phytoplankton. To do

so, new thermal models should be designed to

represent the temperature coupling with the most

important growth factors. For phytoplankton, some

models accounting for light and temperature have

been validated on experimental data (Bernard and

Rémond 2012), but we do not know in which extent

they can be used. For example, the effect of temper-

ature at high light intensity has not clearly been

investigated. The development of cell-scaled models

representing the different states of the photosystem

centers and their temperature sensitivities [as done, for

example, by Duarte (1995)] should help to better

understand the temperature and light coupling. For

nutrients, the coupling effect of temperature and

starvation have a drastic impact on growth, and

models are in development (Thomas 2013; Thomas

et al. 2017).

It is worth noting that we did not describe

adaptation models at the evolutionary time-scale

which are needed to understand long time effects of

an increase in temperature on the thermal response.

These models, mostly based on the adaptive dynamics

theory, are currently being developed (Thomas 2013;

Grimaud 2016) and should be the next stage to

understand the effect of global warming on oceans.
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Quentin Béchet, Colin Kremer, Mridul Thomas and the

Litchman&Klausmeier Lab for their interesting comments on

the paper. We also thank the three anonymous reviewers for

their helpful suggestions.

References

Akaike H (1992) Information theory and an extension of the

maximum likelihood principle. In: Breakthroughs in

statistics. Springer, New York, pp 610–624

Arrhenius S (1889) On the reaction velocity of the inversion of

cane sugar by acids. Zeitschrift für Physikalische Chemie

4:226–248

Augustin JC, Carlier V (2000) Modelling the growth rate of

listeria monocytogenes with a multiplicative type model

including interactions between environmental factors. Int J

Food Microbiol 56(1):53–70

Baranyi J, Roberts TA (1995) Mathematics of predictive food

microbiology. Int J Food Microbiol 26(2):199–218

Baranyi J, Robinson T, Kaloti A, Mackey B (1995) Predicting

growth of brochothrix thermosphacta at changing temper-

ature. Int J Food Microbiol 27(1):61–75

Baroukh C (2014) Metabolic modeling under non-balanced

growth. Application to microalgae for biofuels production.

PhD thesis, Université Montpellier 2
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